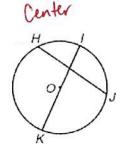
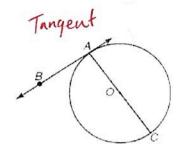

Period: Date: __

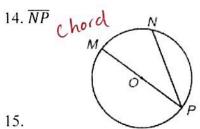
11.1 - Intro to Circles

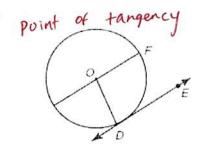
Identify an instance of each term in the diagram.

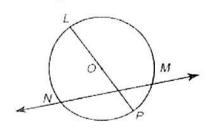

- 1. center of the circle A
- 3. secant of the circle my
- 5. point of tangency
- 7. inscribed angle
- 9. major arc
- 11. diameter

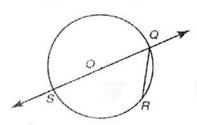

- chord HI
- tangent of the circle
- (6.) central angle KVAP
- (8)
- minor arc VB (10)
- (12) semicircle

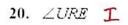
Name the indicated part of each circle



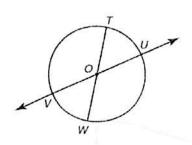

 \overrightarrow{AB}


15.

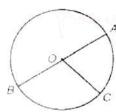

16. D


17. MN Secant

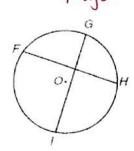
18. ∠SQR Inscribed 4


Identify each angle as an inscribed angle or a central angle.

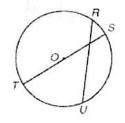
- 22. ZKOM C
- 24. ZMOU C


Classify each arc as a minor arc, major arc, or semicircle.

19. LTOU certral 4



- Z O K
- 21. ∠ZOM C
- 23. ∠ZKU I
- 25. ∠ROK C


26. AC MINO/

27. FHI Major

28. TRS Semi.

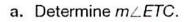
PAP Geometry HW

11.2 - Central Angles, Inscribed Angles, and Intercepted Arcs

Use circle S to answer each question

1. Suppose that $\widehat{mCE} = 59^{\circ}$. What is \widehat{mCFE} ?

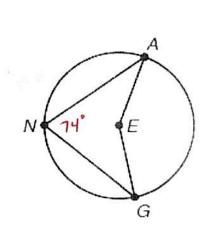
2. Suppose that $m \angle CSI = 124^{\circ}$. What is $m\widehat{Fl}$?

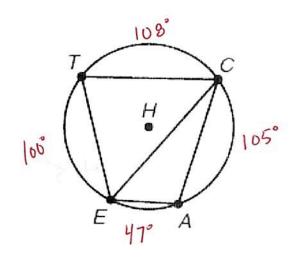

3. Suppose that $\widehat{mCE} = 55^{\circ}$. What is $m \angle EFC$?

4. Suppose that $m \angle FSI = 71^{\circ}$. What is \widehat{mIC} ?

- 5. In circle E shown, $m \angle ANG = 74^{\circ}$.
 - a. Determine m∠AEG.

b. Determine mANG.

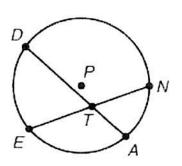


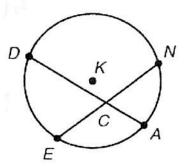


b. Determine $m \angle TCE$.

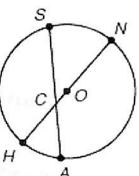
c. Determine *m*∠*CAE*.

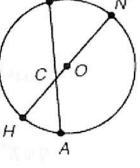
d. Determine $m \angle TEA$.

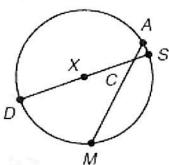


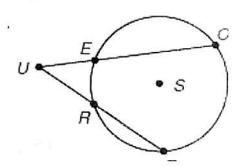

11.3 - Measuring angles Inside and Outside of Circles

1. In circle P shown, $\widehat{mDE} = 75^{\circ}$ and $\widehat{mNA} = 49^{\circ}$. Determine $m \angle DTE$.


62

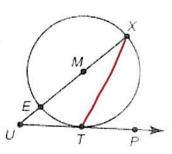

2. In circle K shown, $\widehat{mDN} = 144^{\circ}$ and $m \angle NCA = 68^{\circ}$. Determine \widehat{mEA} .


3. In circle O shown, $\widehat{mSN} = 55^{\circ}$ and $\widehat{mHA} = 35^{\circ}$. Determine $m \angle SCH$.

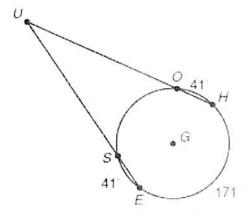


4. In circle X shown, $\widehat{mAS} = 11^{\circ}$ and $\widehat{mMS} = 104^{\circ}$. Determine $m \angle DCM$.

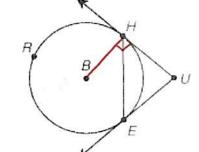
5. In circle S shown, $\widehat{mER} = 38^{\circ}$ and $\widehat{mOT} = 121^{\circ}$. Determine $m \angle OUT$.



PAP Geometry HW


6. In circle M shown, \overline{XE} is a diameter of the circle and $m\widehat{XT} = 132^{\circ}$. Draw a chord that connects points X and T. Then determine $m \angle XUT$.

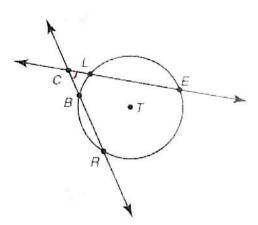
42°


7. In circle G shown, OH = ES, $\widehat{mOH} = 41^{\circ}$, and $\widehat{mHE} = 171^{\circ}$. Determine $m \angle EUH$.

32°

- 8. In circle B shown, $\widehat{mHE} = 99^{\circ}$.
 - a. Determine *m∠HUE*.

81°



b. Determine *m∠BHU*.

900

9. In circle *T* shown, $m\angle RCE = 57^{\circ}$ and $\widehat{mRE} = 141^{\circ}$. Determine \widehat{mBL} .

270

11.4 - Chords

Match each definition with its corresponding term.

- a. If two chords of the same circle or congruent circles are congruent, then their corresponding arcs are congruent.
- b. The segments formed on a chord when two chords of a circle intersect
- If two chords of the same circle or congruent circles are congruent, then they are equidistant from the center of the circle.
- d. If two arcs of the same circle or congruent circles are congruent, then their corresponding chords are congruent.
- If two chords of the same circle or congruent circles are equidistant from the center of the circle, then the chords are congruent.
- If two chords of a circle intersect, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments in the second chord.
- If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and bisects the arc determined by the chord.
- 6 1. Diameter-Chord Theorem

C 2. Equidistant Chord Theorem

E 3. Equidistant Chord Converse Theorem

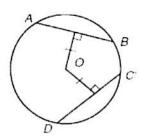
A 4. Congruent Chord-Congruent Arc Theorem

5. Congruent Chord-Congruent Arc Converse Theorem

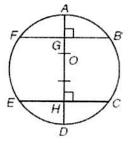
B 6. Segments of a chord

F_7. Segment-Chord Theorem

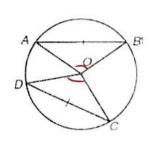
Determine each measurement.


8. If \overline{BD} is a diameter, what is the length of \overline{EC} ?

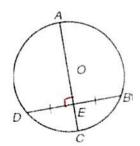
5 cm

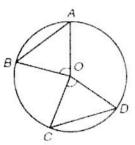

9. If the length of \overline{AB} is 13 millimeters, what is the length of \overline{CD} ?

13 mm

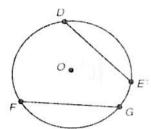

10. If the length of \overline{BF} is 32 inches, what is the length of \overline{CH} ?

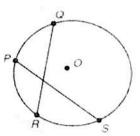
16 in.


11. If the measure of $\angle AOB = 155^{\circ}$, what is the measure of $\angle DOC$?

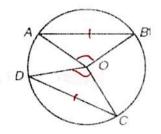


12. If segment \overline{AC} is a diameter, what is the measure of $\angle AED$?

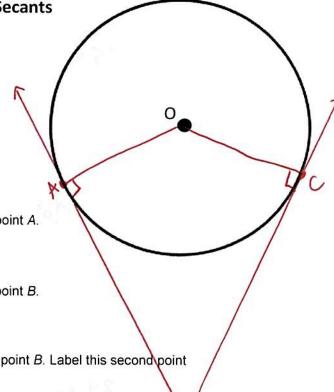

900


13. If the length of \overline{AB} is 24 centimeters, what is the length of \overline{CD} ?

14. If $\overline{DE} = \overline{FG}$, how does the measure of \widehat{DE} and \widehat{FG} compare?



15. If $\overline{QR} = \overline{PS}$, how does the measure of \widehat{QPR} and \widehat{PRS} compare?


16. If $\angle AOB = \angle DOC$, what is the relationship between \overline{AB} and \overline{DC} ?

11.5 - Tangents and Secants

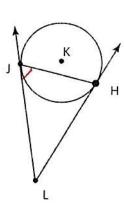
1. Use circle O to complete parts (a) through (h).

- a. Draw a tangent to circle O. Label the point of tangency as point A.
- b. Label another point on the tangent you drew in part (a) as point B.
- c. Draw a second tangent line to circle O that passes through point B. Label this second point of tangency as point C.
- **d.** Draw the radii \overline{OA} and \overline{OC} .
- **e.** What is $m \angle OAB$? Explain your reasoning.

f. What is $m \angle OCB$? Explain your reasoning.

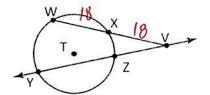
g. Use a protractor to determine the measure of ∠AOC.

1200

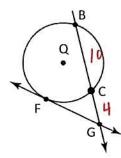

h. What is *m*∠*ABC*? Explain your reasoning.

Quadrilateral = 360° ZABC = 60°

PAP Geometry HW


2. In the figure shown, rays LJ and LH are tangent to circle K, and the measure of angle LJH is 71°. What is the measure of angle JLH?

38


3. In the figure shown, WV = 36 inches, point X is a midpoint of segment WV, and YV = 40 inches. What is YZ?

23.8 in

4. In the figure shown, line FG is tangent to circle Q, BC = 10 feet, and CG = 4 feet. What is FG?

7.48 Ft.

EA ...

7

to do t