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Chapter 12 - Circles

124
Inscribed and Circumscribed Triangles and Quadrilaterals

o Inscribed polygon: a polygon drawn inside a circle such that each vertex of the polygon touches the circle.
(inscribed = drawn inside)

o Circumscribed polygon: a polygon drawn outside a circle such that each side of the polygon is tangent to
the circle. (circumscribed = drawn around)
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The Inscribed Right Triangle-Diameter theorem states that if a triangle is inscribed in a circle such that one
side of the triangle is a diameter of the circle, then the triangle is a right triangle.
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The Inscribed Right Triangle-Diameter Converse theorem states that if a right triangle is inscribed in a circle,
then the hypotenuse is a diameter of the circle.
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The Inscribed Quadrilateral-Opposite Angles theorem states that if a quadrilateral is inscribed in a circle, then

the opposite angles are supplementary.

Find x and y.
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Check for Understanding:

Find x and y.
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12.2: Arc Length

o Arc Length: a portion of the circumference of a circle. The length of an arc is different from the degree
measure of the arc. Arcs are measured in degrees whereas arc lengths are linear measurements.

There is a proportional relationship between the measure of an arc length of a circle, s, and the circumference

of the circle. To measure arc length, s, you multiply the circumference of the circle by a fraction that
represents the portion of the circumference determined by the central angle measure, m.
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Example 1: Determine the measure of an arc for a circle with a radius of 10 inches and a central angle of 80°.

o 360
Q0 Ilo\n- 8!
= O
¥ i 8

- %= s 20T = "l_____DTr or ]?)GILJII”]

Q ?

Example 2 - 3: Calculate the arc length of each circle, express your answer in terms of 7.
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Example 4: Two semicircle cuts were taken from the rectangular region shown. — _"iéo""
-Determine the perimeter of the shaded region. Round answer to two decimal places. \ )
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So far you have described measures of arcs and angles using degrees.

o Aradian is the measure of a central angle whose arc length is the same as the radius of the circle.
Radians are another unit that can be used to measure angles and arcs.

T & represents the measure of the
When converting degree to radians, multiply a degree measure by T central angle in radians.
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Check for Understanding: 3 dom=2¢
e The two circles have the same center at O.
e OB is aradius of the small circle. 04 is a radius of the large circle.
e EF is a diameter of the small circle. DC is a diameter of the large circle.
e mOB = 4in, mAB = 5in, mzBOF = 50°
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12.3:;

Sectors and Segments of a Circle

o Concentric circles: circles that share the same center point.

How many concentric circles do you see in the dartboard shown these circles.
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The diameter of the outermost circle is 170mm. Calculate its area in terms of 7.

A=mc* A=T85" A= 122511

o Sector of a circle: a region of the circle bounded by two radii and the included arc.

How many congruent sectors are contained in the outermost circle of the dartboard?
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What is the measure of the central angle and intercepted arc formed by each sector?

LW = gectors — BLo+20 = IR°

What is the ratio of the length of each intercepted arc to the circumference?
i
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What is the ratio of the area of each sector to the area of the circle?
(
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There is a proportional relationship between the area of a sector of a circle, A, and the area of a circle. To
determine the area of a sector, A, you multiply the area of the circle by a fraction that represents the portion

of the area determined by the central angle measure, m.
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o Segment of a circle: a region of the circle bounded by a chord and the included arc. Secto”
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how could we find the area of the segement of a circle? Al S?jm enf-

If we know how to find the area of a sector,

Area of Sector — aren of triangle

Example 1: If the length of the radius of circle Cis 8cm and mzACB = 90°, what is the area of the shaded
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Example 3: The length of the raaius 1s 10in. What is the area of the shaded region of circle 0?

A= @0 . A=l O =TI

1$= ror LY J
Z g

30 * 710 = A
A=25T1 e T =24 . b
Segment = 25T -50 T > ment
= 2%.§49 Shaded arra= 285 L a2

Check for Understanding:
A dog is tethered to the corner of his rectangular dog house with a 10ft chain that keeps the dog within 10ft of

the corner. =2
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12.4: Circle Problems

Problem 1: Abraj Al Bait Towers clock in Mecca, Saudi Arabia, has a clock face with a diameter of 43 meters.

a. Determine the length of an arc connecting any two numbers on the clock face.
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b. Determine the area of the sector formed by the minute hand and the hour hand when the time in 1:00.
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Problem 2: A square is inscribed in a circle. The length of each side of the square in 2cm. Determine the area
of the shaded region.

shadesd = Cicele — Square
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Problem 3: A circle is inscribed in a square. The length of the diameter or the circle is 2v/2. Determine the area
of the shaded region.
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Problem 4: = -.
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Problem 5: Anglea is installing sprinklers in ther front lawn. She has a rectangular lawn that measures 9
meters by 12 meters. She plans to install the sprinklers in opposite corners as shown by points A and C. Each
sprinkler roatates in quarter circles and sprays water 8.4 meters.
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