Cumulative Review

Name: Key
Teacher -- Period.

Chapter 1:

1. Determine the distance between the points (5, 12) and (-1, 6).

$$d = \sqrt{(5+1)^2 + (12-6)^2}$$

$$= \sqrt{36+36}$$

$$= \sqrt{72} \approx 8.49$$

3. Write the equation of a line that passes through A(-1, 7) and B(5, -10).

$$y - y_i = m(x - x_i)$$

Y-7 = -17 (X+1)

5. \overline{JK} has endpoints (3, 7) and (4, -3). If \overline{JK} is translated 12 units down and 7 unites to the left, what are the endpoints of $\overline{J'K'}$?

2. Calculate the midpoint of a line segment with endpoints (-2, -1) and (6, 3)

$$\frac{6^{-2}}{2} = 2$$

$$\frac{3^{-1}}{2} = 2$$
(2,2)

4. Determine if \overrightarrow{AB} from problem #3 is parallel, perpendicular, or neither to a line that passes through C(2, 9) and D(6, -12).

Chapter 2:

- 6. Use the diagram above to match the correct statements tour
- a. $\angle 1$ and $\angle 7$ are \cong because they are \underline{P}
- b. $\angle 6$ and $\angle 10$ are M and \cong
- c. Line m is || to K
- d. ∠2 and 9 are alternate exterior ∠'s
- e. $\angle 1$ and \bigcirc are same-side exterior $\angle' s$
- f. Liner is || to f
- g. Same-side interior $\angle's$ are n
- h. Corresponding $\angle's$ are 2.
- i. $\angle 2$ and $\angle 3$ are \cong because they are

- j. vertical ∠'s
- K. Line l
- 1. congruent
- \mathfrak{M} . alternate interior $\angle's$
- n. supplementary
- ø. ∠10
- p. corresponding $\angle's$
- g. 28
- y. Line s

7. Find the values of x.

$$x^2 + 3x = 180$$

$$x^2 + 3x - 180 = 0$$

8. \overrightarrow{AF} bisects $\angle RAE$, $m \angle SAR = 6x$, $m \angle RAE = 90 - x$. Find the value of x.

$$6x + 90 - x = 180$$

 $5x = 90$
 $x = 18$

Chapters 3-4:

9. Find the lateral surface area and total surface area of the triangular prism.

LA = Ph
$$S = Ph + 2B$$

= 120(90) = 9600 + 2(600)
= 9600 + 2 = 10800 + 2

10. Find the volume of the remaining figure when the cone is removed from the cylinder.

$$Cy1. = \pi r^2 h$$
 $cone = \frac{1}{3}Bh$
= $\pi 15^2(20)$ = $\frac{1}{3}(15^2\pi)(20)$
= 4500π = 1500π

11. What shape is created when you rotate the right triangle shown 360° about the x-axis, what is the volume of the resulting shape in terms of π ?

$$V = \frac{1}{3}Bh$$

= $\frac{1}{3}(3^{2}\pi \Gamma)(4)$
= 12 TT

12.
$$MO = \int 3$$

13. Matt wants to design the first section of a roller coaster track. He wants the ramp section to rise at 45° with the horizontal and connect at the top of a segment 100 feet high. Find x, the length of the ramp that Matt needs to complete his section of the coaster track?

14. Carla looks down from a height of 15 yards at the top of her apartment building. She lines up the top of a flagpole with the curb of a street 20 yards away. If the flagpole is 12 yards from the apartment building, how tall is the flagpole?

$$\frac{15}{20} = \frac{x}{8}$$
 $15(8) = 20 \times x$
 $x = 6 \text{ yd}$

15. Given $\triangle ABE \sim \triangle ACD$, find BC.

16. Given $\triangle ABE \sim \triangle ACD$, find BC.

18. What is the length of \overline{GH} , if $\Delta GHI \cong \Delta JKL$?

$$y+21 = -5x$$
 $y=-5x-21$
 $6-y=-4x$

X = -3 GH = -6 + 21 GH = 15 GH = 15 GH = 15 GH = 15 GH = 15find the value of x and y.

$$4x-y=2x+2$$

 $3y-2=x+2y$ $x=y-2$

$$4(y-2)-y=2(y-2)+2$$

 $4y-8-y=2y-4+2$
 $y=6$
 $x=4$

#20-27. For each pair of triangles, tell which postulate, if any, can be used to prove the triangles congruent. (ASA, AAS, SSS, SAS, HL)

20. $\triangle AEB \cong \triangle DEC$

22. $\triangle DEA \cong \triangle BEC$

24. $\triangle RTS \cong \triangle CBA$

26. ΔBAP ≅ ΔBCP

Given: \overrightarrow{BD} bisects $\angle ABC$

21. ΔCDE≅ΔABF ____A

23. $\triangle AGE \cong \triangle CDF S$

25. ΔABC≅ΔADC AAS

27. ∆SAT≅∆SAR HL

Chapter 9:

28. When the angle of elevation of the sun is 62°, a building casts a shadow 18 m long. How tall (t) is the building?

$$\tan 62 = \frac{x}{18}$$
 $18 \tan 62 = x$
 $x = 33.85 \text{ m}$

29. Fred is standing on a 25m tower and sees a snake on the ground 18 m from the base of the tower, what is the angle of depression (d) from Fred to the snake?

$$tan X = \frac{25}{18}$$

 $tan^{-1}(\frac{25}{18}) = X$
 $X = 54.25^{\circ}$

30. A wire is attached from the top of a tower to a point on the ground. The base of the tower is 35 m from the end of the wire on the ground. If the wire makes a 65° angle with the ground, how long is the wire (w)?

$$\cos 65 = \frac{35}{x}$$

$$x = \frac{35}{\cos 65}$$

$$x = 82.82 \text{ m}$$

31. A ladder that is 20 ft. long is leaning against the side of a building. If the angle formed between the ladder and ground is 75°, how far is the bottom of the ladder from the base of the building? How far up the building will it reach?

$$\cos 75 = \frac{x}{20}$$

$$20 \cos 75 = x$$

$$X = 5.18 \text{ f+}$$

$$5in75 = \frac{4}{20}$$
 $20 \sin 75 = 4$
 $4 = 19.32$

Chapter 10:

Review Quadrilateral Flipbook from Chapter 10 to know the properties of the different parallelograms (parallelogram, rhombus, square, rectangle).

	Opp. Sides	Opp. Sides ≅	All Sides ≅	Opp. Angles ≅	All Angles ≅
Parallelogram	X	X		X	
Rhombus	X	X	X	X	
Square	X	X	*	~	X
Rectangle	X	X		×	×
	Diagonals bisect each other	Diagonals 1	Diagonals ≅	Diagonals bisect ∠'s	Consecutive $\angle' s$ supp.
Parallelogram	X				×
Rhombus	X	X		X	×
Square	×	X	X	×	X
Rectangle	X		X	*	×

^{**} Also review Quadrilateral Flipbook from Chapter 10 to know the properties of kites and trapezoids.**

<u>Trapezoid Midsegment Theorem:</u> The midsegment of a trapezoid is parallel to each of the bases and its length is one half the sum of the bases (average measure of bases).

Chapter 14-15:

Geometric Probability

32. What is the probability that a randomly selected point is in the shaded region?

$$\frac{\text{favorable}}{\text{total}} = \frac{\text{Shaded area}}{\text{total area}} = \frac{\Box - \Delta - O}{\Box}$$

$$\frac{1}{3} = 30$$

$$\Delta = 4.5$$

$$0 = 4\pi$$

$$\frac{30 - 4.5 - 4\pi}{30} = .4311$$

$$\frac{43.11\%}{30}$$

Chapters 11-13:

33. $\angle TOU = 37^{\circ}$, what is m \widehat{VW} ?

34. m $\widehat{SR} = 72^{\circ}$, what is m \angle SQR?

35. In circle P, m $\widehat{DE} = 75^{\circ}$, and m $\widehat{NA} = 49^{\circ}$, determine m $\angle DTE$

$$\frac{75 + 49}{2} = X$$

$$\frac{75 + 49}{2} = X$$
 $\frac{124}{2} = [62^{\circ}]$

36. In circle S, m $\widehat{ER} = 38^{\circ}$, and m $\widehat{OT} = 121^{\circ}$, determine m $\angle OUT$

$$\frac{121-38}{2} = X$$
 $\frac{83}{2} = 41.5$

37. In the figure shown, line FG is tangent to circle Q, BC = 10 feet, and CG = 4 feet.

What is
$$FG$$
?

**Review material from Chapters 12-13 such as arc length, sector and segment area, standard and general form of the equation of a circle, and completing the square in order to rewrite general form to standard form. **