Name: Key

11.4 - Chords

** A chord is a line segment with each endpoint on the circle. **

The <u>Diameter--Chord Theorem</u> states that if a circle's diameter is perpendicular to a chord, then the diameter bisects the chord and bisects the arc determined by the chord.

Find x, $m\overline{CD}$, and $m\widehat{CD}$.

(hint: you need a central angle to find the arc, *use trigonometry*)

$$5^{2}-3^{2}=X^{2}$$
 $\overline{CD}=8$ $Sin\theta=\frac{0}{H}$
 $X=4$ $Sin\theta=\frac{4}{5}$
 $Sin^{-1}(\frac{4}{5})=\theta=53.13^{\circ}$

The <u>Equidistant Chord Theorem</u> states that if two chords of the same circle or congruent circles are congruent, then they are equidistant from the center of the circle.

In circle O, chords \overline{CH} and \overline{RD} are congruent.

Find \overline{EO} .

$$10^{2}-6^{2}=\overline{10}^{2}$$
 $\overline{10}=8$ $\overline{E0}=8$

The <u>Equidistant Chord Converse Theorem</u> states that if two chords of the same circle or congruent circles are equidistant from the center of the circle, then the chords are congruent.

In circle *O*, $\overline{EO} = 12$ and $\overline{IO} = 12$.

What can you conclude about chords \overline{CH} and \overline{RD} ?

the chords are =

* Congruent-chord congruent-arc theorem: if two chords are of them their correspondences are of them their correspondences are of them their correspondences.

Abnownt-chord congress-arc Converse theorem : if two arcs are = (then) their corresponding

Segments of chord are the segments formed on a chord when two chords of a circle intersect.

**name the segments of each chord created below.

The Segments—Chord Theorem states that if two chords in a circle intersect, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the second chord.

$$AE \times EB = CE \times ED$$

$$9 \times = 3(15)$$

$$9 \times = 45$$

$$\times = 5$$

Use the theorems involving circles to solve the example problems:

150

1. Find $m\widehat{BC}$.

$$m\widehat{AC} = 150^{\circ}$$

60

150

$$m\overline{OB} = 9$$

$$m\overline{OK} = 9$$

$$m\overline{RH} = 30$$

3. Find
$$m\overline{AD}$$
.

$$m\overline{AE} = 12$$

$$m\overline{BE} = 3$$

$$m\overline{EC} = 5$$

$$mEC = 5$$

$$X = 20$$