Chap 7 and 8 REVIEW

Study all of your Chapter 7 and 8 Notes, HW, and Review

1. Rotate ΔABC whose coordinates are A(3, 2), B(3, 6), C(6, 1) 90° counterclockwise about the origin and then Reflect it over the Y axis.

B'(_6,3)

C'(-1, 6)

A"(2,3)

B"(6,3)

C"(1,6)

2. Find the image of ΔABC after a translation of <4, -5>

Proof

Given: G is the midpoint of \overline{FH} .

$$\overline{EF} \cong \overline{EH}$$

Prove: $\angle 1 \cong \angle 2$

1. Given

#4-11. For each pair of triangles, tell which postulate, if any, can be used to prove the triangles congruent.

ΔAEB ≅ ΔDEC

6. ADEA ≅ ∆BEC

8. ∆RTS ≅ ∆CBA

10. ΔBAP ≅ ΔBCP Given: BD bisects ∠ABC

5. ΔCDE ≅ ΔABF _

7. ΔAGE ≅ ΔCDF_

9. ∆ABC ≅ ∆ADC _

11. ∆SAT ≅ ∆SAR

SAS

Chap 7 and 8 REVIEW

12. What is the length of \overline{GH} , if $\Delta GHI \cong \Delta JKL$?

13. If \triangle CAT \cong \triangle DOG, CA = 4x - y, CT = 3y - 2, DO = 2x + 2 and

$$4(y-2) - y = 2x + 2$$

$$4(y-2) - y = 2(y-2) + 2$$

$$4(y-2) - y = 2(y-2) + 2$$

$$4(y-8 - y) = 2y - 4 + 2$$

$$3y - 8 = 2y - 2$$

$$4y = 9$$

$$x = 4$$

- 14. What conjecture can you make if X is the midpoint of \overline{PQ} and $\overline{RX} \perp \overline{PQ}$? (draw a picture first)
 - A. $\triangle RXQ \cong \triangle RPQ$ by ASA congruence.
 - B. $\triangle PRX \cong \triangle QRX$ by SAS congruence.
 - C. $\triangle RXP \cong \triangle XQP$ by HL congruence.
 - D. The triangles are not congruent.

Chap 7 and 8 REVIEW

Study all of your Chapter 7 and 8 Notes, HW, and Review

15. Given: R is the midpoint of \overline{PS} R is the midpoint of \overline{QT}

$$\overline{PQ} \cong \overline{ST}$$

Prove: $\angle P \cong \angle S$

1. R is the midpoint

2. R is the midpoint 3. Pa = ST

4 PR PRS, QR PRT S. A PRO = A SRT 6. ZP = 25

4. Def. of midpoint

Given: $\overline{AC} \perp \overline{DB}$; $\overline{EF} \perp \overline{DB}$ 16. $\overrightarrow{AC} \cong \overrightarrow{EF}$; $A \cong E$

Prove: $_B = _D$

· ACLOB; EFL DB

2. AC º EF; CA º CE

3. <1 and <2 0

4. 21= <2

6. KB = KD

1. Given

4. Def. = x's 5. ASA