Date: ______ Period: _____

11.1 - Intro to Circles

Identify an instance of each term in the diagram.

- 1. center of the circle
- **3.** secant of the circle
- **5.** point of tangency
- 7. inscribed angle
- 9. major arc
- 11. diameter

- 2. chord
- **4.** tangent of the circle
- **6.** central angle
- **8.** arc
- **10.** minor arc
- **12.** semicircle

Name the indicated part of each circle

13. O

 \overleftrightarrow{AB}

14. *NP*

16. D

17. *MN*

18. ∠*SQR*

Identify each angle as an inscribed angle or a central angle.

- **20.** ∠*URE*
- **22.** ∠*KOM*
- **24**. ∠MOU

21. ∠*ZOM*

19. ∠*TOU*

- **23**. ∠*ZKU*
- **25.** ∠*ROK*

Classify each arc as a minor arc, major arc, or semicircle.

26. AC

27. FHI

28. TRS

11.2 – Central Angles, Inscribed Angles, and Intercepted Arcs

Use circle S to answer each question

- **2.** Suppose that $m \angle CSI = 124^{\circ}$. What is $m\widehat{FI}$?
- 3. Suppose that $\widehat{mCE} = 55^{\circ}$. What is $m \angle EFC$?
- **4.** Suppose that $m \angle FSI = 71^{\circ}$. What is \widehat{mIC} ?
- 5. In circle E shown, $m \angle ANG = 74^{\circ}$.
 - a. Determine $m \angle AEG$.

- **b.** Determine \widehat{mANG} .
- **6.** In circle *H* shown, $\widehat{mCA} = 105^{\circ}$, $\widehat{mEA} = 47^{\circ}$, and $\widehat{mET} = 100^{\circ}$.
 - a. Determine $m \angle ETC$.
 - **b.** Determine $m \angle TCE$.
 - **c.** Determine $m \angle CAE$.

THO C

d. Determine $m \angle TEA$.

11.3 – Measuring angles Inside and Outside of Circles

1. In circle *P* shown, $\widehat{mDE} = 75^{\circ}$ and $\widehat{mNA} = 49^{\circ}$. Determine $m \angle DTE$.

2. In circle K shown, $\widehat{mDN} = 144^{\circ}$ and $m \angle NCA = 68^{\circ}$. Determine \widehat{mEA} .

3. In circle O shown, $\widehat{mSN} = 55^{\circ}$ and $\widehat{mHA} = 35^{\circ}$. Determine $m \angle SCH$.

4. In circle X shown, $\widehat{mAS} = 11^{\circ}$ and $\widehat{mMS} = 104^{\circ}$. Determine $m \angle DCM$.

5. In circle S shown, $\widehat{mER} = 38^{\circ}$ and $\widehat{mOT} = 121^{\circ}$. Determine $m \angle OUT$.

6. In circle M shown, \overline{XE} is a diameter of the circle and $\widehat{mXT} = 132^\circ$. Draw a chord that connects points X and T. Then determine $m \angle XUT$.

7. In circle G shown, OH = ES, $\widehat{mOH} = 41^\circ$, and $\widehat{mHE} = 171^\circ$. Determine $m \angle EUH$.

- 8. In circle B shown, $\widehat{mHE} = 99^{\circ}$.
 - a. Determine *m*∠*HUE*.

b. Determine *m*∠*BHU*.

9. In circle *T* shown, $m \angle RCE = 57^{\circ}$ and $\widehat{mRE} = 141^{\circ}$. Determine \widehat{mBL} .

11.4 - Chords

Match each definition with its corresponding term.

- **a.** If two chords of the same circle or congruent circles are congruent, then their corresponding arcs are congruent.
- **b.** The segments formed on a chord when two chords of a circle intersect
- **c.** If two chords of the same circle or congruent circles are congruent, then they are equidistant from the center of the circle.
- **d.** If two arcs of the same circle or congruent circles are congruent, then their corresponding chords are congruent.
- **e.** If two chords of the same circle or congruent circles are equidistant from the center of the circle, then the chords are congruent.
- **f.** If two chords of a circle intersect, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments in the second chord.
- **g.** If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and bisects the arc determined by the chord.

1. Diameter-Chord Theorem	2. Equidistant Chord Theorem
3. Equidistant Chord Converse Theorem	4. Congruent Chord-Congruent Arc Theorem
5. Congruent Chord-Congruent Arc Converse Theorem	
6. Segments of a chord	7. Segment-Chord Theorem

Determine each measurement.

8. If \overline{BD} is a diameter, what is the length of \overline{BC} ?

9. If the length of \overline{AB} is 13 millimeters, what is the length of \overline{CD} ?

10. If the length of \overline{BF} is 32 inches, what is the length of \overline{CH} ?

11. If the measure of $\angle AOB = 155^{\circ}$, what is the measure of $\angle DOC$?

12. If segment \overline{AC} is a diameter, what is the measure of $\angle ABD$?

13. If the length of \overline{AB} is 24 centimeters, what is the length of \overline{CD} ?

14. If $\overline{DE} = \overline{FG}$, how does the measure of \widehat{DE} and \widehat{FG} compare?

15. If $\overline{QR} = \overline{PS}$, how does the measure of \widehat{QPR} and \widehat{PRS} compare?

16. If $\angle AOB = \angle DOC$, what is the relationship between \overline{AB} and \overline{DC} ?

11.5 - Tangents and Secants

1. Use circle O to complete parts (a) through (h).

- **a.** Draw a tangent to circle *O*. Label the point of tangency as point *A*.
- **b.** Label another point on the tangent you drew in part (a) as point *B*.
- **c.** Draw a second tangent line to circle *O* that passes through point *B*. Label this second point of tangency as point *C*.
- **d.** Draw the radii \overline{OA} and \overline{OC} .
- **e.** What is $m \angle OAB$? Explain your reasoning.
- **f.** What is $m \angle OCB$? Explain your reasoning.
- **g.** Use a protractor to determine the measure of $\angle AOC$.

h. What is $m \angle ABC$? Explain your reasoning.

PAP Geometry HW

2. In the figure shown, rays *LJ* and *LH* are tangent to circle *K*, and the measure of angle LJH is 71°. What is the measure of angle JLH?

3. In the figure shown, WV = 36 inches, point X is a midpoint of segment WV, and YV = 40 inches. What is YZ?

4. In the figure shown, line *FG* is tangent to circle *Q*, *BC* = 10 feet, and *CG* = 4 feet. What is *FG*?

