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PAP Geometry Notes D

6.3 Theorems about Proportionality

The Angle Bisector/Proportional Side Theorem: A bisector of an angle in a triangle divides the
opposite side into two segments whose lengths are in the same ratio as the lengths of the sides adjacent to

the angle.”
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On the map shown, North Craig Street bisects the angle formed between Bellefield Avenue and Ellsworth
Avenue.

* The distance from the ATM to the Coffee Shop is 300 feet.

* The distance from the Coffee Shop to the Library is 500
feet.

* The distance from your apartment to the Library is 1200
feet.

Determine the distance from your apartment to the ATM.
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2. CD bisects + C. Solve for DB.

3. CD bisects - C. Solve for AC.
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5. BD bisects - B. Solve for AC
4. AD bisects /A, AC + AB = 386, Solve for AC and AB.
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The Triangle Proportionality Theorem: “If a line parallel to one side of a triangle intersects the other
two sides. then it divides the two sides proportionally.™
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The Converse of the Triangle Proportionality Theorem: “If a line

divides two sides of a triangle proportionally, then it is parallel to the Given: BD _ CE
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The Proportional Segments Theorem: “If three parallel lines intersect two / \
transversals, then they divide the transversals proportionally.” a—— -‘ﬁf———-- — \i—’—-- S
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Lo k The Triangle Midsegment Theorem: “The midsegment of a triangle is parallel to the
third side of the triangle and is half the measure of the third side of the triangle.”
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You can use the Midpoint Formula and the Triangle Midsegment Theorem to
verify that two line segments in the coordinate plane are parallel. Consider
triangle PQR.
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Use the Midpoint Formula to verify that point S is the midpoint of line segment
PR and that point T is the midpoint of line segment PQ.
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