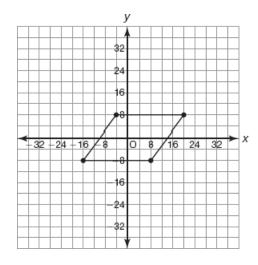

1. Analyze the figure shown.

- **a.** Determine the perimeter of the composite figure. Round to the nearest tenth.
- **b.** Determine the area of the composite figure. Round to the nearest tenth.

- 2. A square on the coordinate plane has opposite vertices at (0, 0) and (6, 6). What would the area of the square be if each side length were decreased by a factor of $\frac{1}{2}$?
 - **a.** 6 square units
 - **b.** 9 square units
 - c. 12 square units
 - d. 18 square units

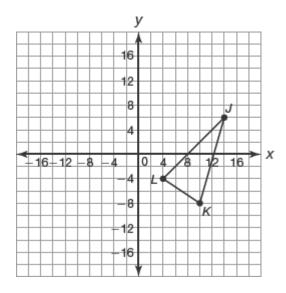

3. Analyze triangle *XYZ*.

- **a.** Determine the perimeter of triangle *XYZ*.
- **b.** Explain why triangle *XYZ* is a right triangle.
- **c.** Determine the area of triangle *XYZ*.

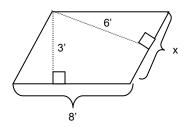

- **4.** What happens to the perimeter of a regular hexagon with side lengths of 5 units when each side length is increased by a factor of 4?
- **5.** What happens to the area of a triangle with base 10 units and height 9 units when its dimensions are decrease by 3 units.
 - 6. A trapezoid has bases 12m and 8m and an area of 384m². Find its height.

7. Which statement is *not* true about this polygon?

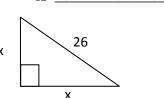
- **a.** The polygon has a perimeter of 88 units.
- **b.** The polygon has an area of 384 square units.
- **c.** The polygon has 2 pairs of congruent angles.
- **d.** The polygon has 4 congruent sides.


8. Joel knows that the formulas to determine the areas of rectangles and non-rectangular parallelograms are the same. He multiplies the lengths of \overline{WX} and \overline{WZ} to determine the area of parallelogram WXYZ.

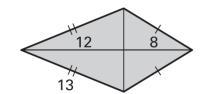
- **a.** Has Joel correctly determined the area of the parallelogram? Explain your reasoning.
- **b.** Calculate the area of parallelogram *WXYZ*. Show your work.

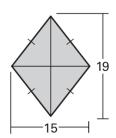

Determine its perimeter. Round your answer to the nearest hundredth, if necessary.

9. triangle *JKL*

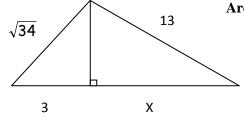


10. Given the parallelogram, find the value of x.

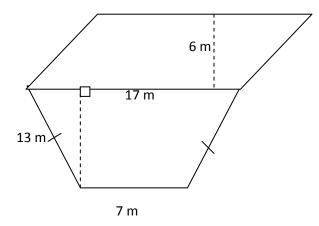

11. Find X


For #12-16, find the area and Perimeter. Round to the nearest hundredth if necessary.

12. 13 m


41 m

14.



15.

Area_____ Perimeter_____

16.

Name:	Period:
Name:	Period:

Review Chap 3 Answer Section

1. ANS:

a. The perimeter of the composite figure is approximately 68.0 units.

I counted the lengths of the horizontal and vertical sides, and I used the Pythagorean Theorem to calculate the lengths of the other sides.

$$AD = 16$$
, $EF = 10$, $FG = 4$, $GH = 10$, $IJ = 6$

Length of
$$\overline{DE}$$
: Length of \overline{HI} : Length of \overline{JA} : $a^2 + b^2 = c^2$ $a^2 + b$

perimeter =
$$AD + DE + EF + FG + GH + HI + IJ + JA$$

= $16 + \sqrt{40} + 10 + 4 + 10 + \sqrt{72} + 6 + \sqrt{52}$
 ≈ 68.0

b. The area of the composite figure is 136 square units.

I divided the figure into two triangles, one rectangle, and one trapezoid.

The total area of the two triangles is 30 square units.

Area of Triangles:

area of
$$\triangle IJH = \frac{1}{2}bh$$
 area of $\triangle JAB = \frac{1}{2}bh$

$$= \frac{1}{2}(6)(6)$$

$$= 18$$

$$= 12$$

The total area of the rectangle is 40 square units. Area of Rectangle *FGHE*:

$$area = bh$$
$$= 10(4)$$
$$= 40$$

The total area of the trapezoid is 78 square units. Area of Trapezoid *EJBD*:

area =
$$\frac{1}{2} (base_1 + base_2)height$$

= $\frac{1}{2} (10 + 16)6$
= $\frac{1}{2} (26)6$
= 78

The total area of the figure is 136 square units.

total area = area of triangles + area of rectangle + area of trapezoid = 30 + 40 + 78 = 148

PTS: 1

REF: 3.5

STA: 3.B | 11.B

TOP: Pre Test

KEY: composite figures

- **2.** ANS:
 - **a.** The perimeter of triangle *XYZ* is approximately 107.94 units.

$$XY = \sqrt{(30-40)^2 + (40-0)^2}$$

$$= \sqrt{(-10)^2 + 40^2}$$

$$XY = \sqrt{1700}$$

$$ZX = \sqrt{(40-50)^2 + (0-45)^2}$$

$$= \sqrt{(-10)^2 + (-45)^2}$$

$$ZX = \sqrt{2125}$$

$$YZ = \sqrt{(50-30)^2 + (45-40)^2}$$

$$= \sqrt{20^2 + (-5)^2}$$

$$YZ = \sqrt{425}$$

Perimeter = XY + YZ + ZX= $\sqrt{1700} + \sqrt{425} + \sqrt{2125}$ ≈ 107.94

b. Triangle XYZ is a right triangle because the slope of \overline{YZ} is $\frac{1}{4}$ and the slope of \overline{XY} is -4. These are negative reciprocals, which means \overline{YZ} is perpendicular to \overline{XY} . Angle Y is a right angle.

Slope of \overline{XY} : – 4

Slope of \overline{YZ} : $\frac{1}{4}$

Slope of \overline{ZX} : $\frac{9}{2}$

c. The area of triangle *XYZ* is 425 square units.

area =
$$\frac{1}{2}bh$$

= $\frac{1}{2}(\sqrt{1700})(\sqrt{425})$
= 425

d. If the dimensions of triangle *XYZ* increase by 3 units, then the area of the resulting triangle also increases, but not by a factor of 3.

Original area (square units): 425

Resulting area (square units): $(\sqrt{1700} + 3) + (\sqrt{425} + 3) \approx 522.27$

Ratio of resulting area to original area: $\frac{522.27}{425} \approx 1.23$

PTS: 1 REF: 3.2 STA: 3.B | 10.B TOP: End Ch Test

3. ANS: B PTS: 1 REF: 3.1 STA: 3.B

TOP: Standardized Test

4. ANS: D PTS: 1 REF: 3.3 STA: 3.B

TOP: Standardized Test

5. ANS:

a. No. Joel is not correct. The height of a parallelogram must be a perpendicular line from the base to a vertex on the opposite side of the figure. Multiplying the lengths of \overline{WX} and \overline{WZ} will not result in the correct area.

b. The area of parallelogram WXYZ is 84 square units.

WX = 14 units

Height = 6 units

Area =
$$bh$$

= (14)(6)
= 84

PTS: 1

REF: 3.3

STA: 3.B

TOP: Assignment

6. ANS:

If the side lengths of the regular hexagon are increased by a factor of 4, then the perimeter of the resulting hexagon increases by a factor of 4.

Perimeter of original hexagon (units): 5+5+5+5+5+5=30

Perimeter of resulting hexagon (units): 20 + 20 + 20 + 20 + 20 + 20 = 120

Ratio of resulting perimeter to original perimeter: $\frac{120}{30} = 4$

PTS: 1

REF: 3.1

STA: 3.B

TOP: Skills Practice

7. ANS:

If the dimensions of the triangle decrease by 3 units, then the area of the resulting triangle also decreases, but not by a factor of 3.

Area of original triangle (square units): $\frac{1}{2}(10)(9) = 45$

Area of resulting triangle (square units): $\frac{1}{2}(7)(6) = 21$

Ration of resulting area to original area: $\frac{21}{45} = \frac{7}{15}$

PTS: 1

REF: 3.1

STA: 3.B

TOP: Skills Practice

8. ANS:

The perimeter is approximately 35.9 units.

$$JK = \sqrt{(10 - 14)^2 + (-8 - 6)^2}$$
$$= \sqrt{16 + 196}$$
$$= \sqrt{212}$$

$$KL = \sqrt{(4-10)^2 + (-4-(-8))^2}$$
$$= \sqrt{36+16}$$
$$= \sqrt{52}$$

$$JL = \sqrt{(4-14)^2 + (-4-6)^2}$$
$$= \sqrt{100 + 100}$$
$$= \sqrt{200}$$

Perimeter =
$$JK + KL + JL$$

= $\sqrt{212} + \sqrt{52} + \sqrt{200}$
 ≈ 35.9

PTS: 1

REF: 3.2

STA: 3.B | 10.B

TOP: Skills Practice